
HappyBase
Release 0.9

April 28, 2016

Contents

1 Example 3

2 Core documentation 5
2.1 Installation guide . 5
2.2 User guide . 6
2.3 API reference . 14

3 Additional documentation 25
3.1 Version history . 25
3.2 Development . 27
3.3 To-do list and possible future work . 28
3.4 Frequently asked questions . 28
3.5 License . 29

4 External links 33

5 Indices and tables 35

i

ii

HappyBase, Release 0.9

HappyBase is a developer-friendly Python library to interact with Apache HBase. HappyBase is designed for use in
standard HBase setups, and offers application developers a Pythonic API to interact with HBase. Below the surface,
HappyBase uses the Python Thrift library to connect to HBase using its Thrift gateway, which is included in the
standard HBase 0.9x releases.

Note: Do you enjoy HappyBase? Great! You should know that I don’t use HappyBase myself anymore, but still
maintain it because it’s quite popular. Please consider making a small donation to let me know you appreciate my
work. Thanks!

Contents 1

http://python.org/
http://hbase.apache.org/
http://pypi.python.org/pypi/thrift
http://thrift.apache.org/
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=ZJ9U8DNN6KZ9Q

HappyBase, Release 0.9

2 Contents

CHAPTER 1

Example

The example below illustrates basic usage of the library. The user guide contains many more examples.

import happybase

connection = happybase.Connection('hostname')
table = connection.table('table-name')

table.put('row-key', {'family:qual1': 'value1',
'family:qual2': 'value2'})

row = table.row('row-key')
print row['family:qual1'] # prints 'value1'

for key, data in table.rows(['row-key-1', 'row-key-2']):
print key, data # prints row key and data for each row

for key, data in table.scan(row_prefix='row'):
print key, data # prints 'value1' and 'value2'

row = table.delete('row-key')

3

HappyBase, Release 0.9

4 Chapter 1. Example

CHAPTER 2

Core documentation

2.1 Installation guide

This guide describes how to install HappyBase.

On this page

• Setting up a virtual environment
• Installing the HappyBase package
• Testing the installation

2.1.1 Setting up a virtual environment

The recommended way to install HappyBase and Thrift is to use a virtual environment created by virtualenv. Setup
and activate a new virtual environment like this:

$ virtualenv envname
$ source envname/bin/activate

If you use the virtualenvwrapper scripts, type this instead:

$ mkvirtualenv envname

2.1.2 Installing the HappyBase package

The next step is to install HappyBase. The easiest way is to use pip to fetch the package from the Python Package
Index (PyPI). This will also install the Thrift package for Python.

(envname) $ pip install happybase

Note: Generating and installing the HBase Thrift Python modules (using thrift --gen py on the .thrift
file) is not necessary, since HappyBase bundles pregenerated versions of those modules.

5

http://pypi.python.org/
http://pypi.python.org/

HappyBase, Release 0.9

2.1.3 Testing the installation

Verify that the packages are installed correctly:

(envname) $ python -c 'import happybase'

If you don’t see any errors, the installation was successful. Congratulations!

Next steps

Now that you successfully installed HappyBase on your machine, continue with the user guide to learn how to use it.

2.2 User guide

This user guide explores the HappyBase API and should provide you with enough information to get you started. Note
that this user guide is intended as an introduction to HappyBase, not to HBase in general. Readers should already have
a basic understanding of HBase and its data model.

While the user guide does cover most features, it is not a complete reference guide. More information about the
HappyBase API is available from the API documentation.

On this page

• Establishing a connection
• Working with tables

– Using table ‘namespaces’
• Retrieving data

– Retrieving rows
– Making more fine-grained selections
– Scanning over rows in a table

• Manipulating data
– Storing data
– Deleting data
– Performing batch mutations
– Using atomic counters

• Using the connection pool
– Instantiating the pool
– Obtaining connections
– Handling broken connections

2.2.1 Establishing a connection

We’ll get started by connecting to HBase. Just create a new Connection instance:

import happybase

connection = happybase.Connection('somehost')

In some setups, the Connection class needs some additional information about the HBase version it will be con-
necting to, and which Thrift transport to use. If you’re still using HBase 0.90.x, you need to set the compat argument

6 Chapter 2. Core documentation

HappyBase, Release 0.9

to make sure HappyBase speaks the correct wire protocol. Additionally, if you’re using HBase 0.94 with a non-
standard Thrift transport mode, make sure to supply the right transport argument. See the API documentation for the
Connection class for more information about these arguments and their supported values.

When a Connection is created, it automatically opens a socket connection to the HBase Thrift server. This be-
haviour can be disabled by setting the autoconnect argument to False, and opening the connection manually using
Connection.open():

connection = happybase.Connection('somehost', autoconnect=False)

before first use:
connection.open()

The Connection class provides the main entry point to interact with HBase. For instance, to list the available tables,
use Connection.tables():

print connection.tables()

Most other methods on the Connection class are intended for system management tasks like creating, dropping,
enabling and disabling tables. See the API documentation for the Connection class contains more information.
This user guide does not cover those since it’s more likely you are already using the HBase shell for these system
management tasks.

Note: HappyBase also features a connection pool, which is covered later in this guide.

2.2.2 Working with tables

The Table class provides the main API to retrieve and manipulate data in HBase. In the example above, we already
asked for the available tables using the Connection.tables() method. If there weren’t any tables yet, you can
create a new one using Connection.create_table():

connection.create_table(
'mytable',
{'cf1': dict(max_versions=10),
'cf2': dict(max_versions=1, block_cache_enabled=False),
'cf3': dict(), # use defaults

}
)

Note: The HBase shell is often a better alternative for many HBase administration tasks, since the shell is more
powerful compared to the limited Thrift API that HappyBase uses.

The next step is to obtain a Table instance to work with. Simply call Connection.table(), passing it the table
name:

table = connection.table('mytable')

Obtaining a Table instance does not result in a round-trip to the Thrift server, which means application code may ask
the Connection instance for a new Table whenever it needs one, without negative performance consequences. A
side effect is that no check is done to ensure that the table exists, since that would involve a round-trip. Expect errors
if you try to interact with non-existing tables later in your code. For this guide, we assume the table exists.

Note: The ‘heavy’ HTable HBase class from the Java HBase API, which performs the real communication with the

2.2. User guide 7

HappyBase, Release 0.9

region servers, is at the other side of the Thrift connection. There is no direct mapping between Table instances on
the Python side and HTable instances on the server side.

Using table ‘namespaces’

If a single HBase instance is shared by multiple applications, table names used by different applications may collide.
A simple solution to this problem is to add a ‘namespace’ prefix to the names of all tables ‘owned’ by a specific
application, e.g. for a project myproject all tables have names like myproject_XYZ.

Instead of adding this application-specific prefix each time a table name is passed to HappyBase, the table_prefix
argument to Connection can take care of this. HappyBase will prepend that prefix (and an underscore) to each
table name handled by that Connection instance. For example:

connection = happybase.Connection('somehost', table_prefix='myproject')

At this point, Connection.tables() no longer includes tables in other ‘namespaces’. HappyBase will only
return tables with a myproject_ prefix, and will also remove the prefix transparently when returning results, e.g.:

print connection.tables() # Table "myproject_XYZ" in HBase will be
returned as simply "XYZ"

This also applies to other methods that take table names, such as Connection.table():

table = connection.table('XYZ') # Operates on myproject_XYZ in HBase

The end result is that the table prefix is specified only once in your code, namely in the call to the Connection
constructor, and that only a single change is necessary in case it needs changing.

2.2.3 Retrieving data

The HBase data model is a multidimensional sparse map. A table in HBase contains column families with column
qualifiers containing a value and a timestamp. In most of the HappyBase API, column family and qualifier names are
specified as a single string, e.g. cf1:col1, and not as two separate arguments. While column families and qualifiers
are different concepts in the HBase data model, they are almost always used together when interacting with data, so
treating them as a single string makes the API a lot simpler.

Retrieving rows

The Table class offers various methods to retrieve data from a table in HBase. The most basic one is Table.row(),
which retrieves a single row from the table, and returns it as a dictionary mapping columns to values:

row = table.row('row-key')
print row['cf1:col1'] # prints the value of cf1:col1

The Table.rows() method works just like Table.row(), but takes multiple row keys and returns those as (key,
data) tuples:

rows = table.rows(['row-key-1', 'row-key-2'])
for key, data in rows:

print key, data

If you want the results that Table.rows() returns as a dictionary or ordered dictionary, you will have to do this
yourself. This is really easy though, since the return value can be passed directly to the dictionary constructor. For a
normal dictionary, order is lost:

8 Chapter 2. Core documentation

HappyBase, Release 0.9

rows_as_dict = dict(table.rows(['row-key-1', 'row-key-2']))

. . . whereas for a OrderedDict, order is preserved:

from collections import OrderedDict
rows_as_ordered_dict = OrderedDict(table.rows(['row-key-1', 'row-key-2']))

Making more fine-grained selections

HBase’s data model allows for more fine-grained selections of the data to retrieve. If you know beforehand which
columns are needed, performance can be improved by specifying those columns explicitly to Table.row() and
Table.rows(). The columns argument takes a list (or tuple) of column names:

row = table.row('row-key', columns=['cf1:col1', 'cf1:col2'])
print row['cf1:col1']
print row['cf1:col2']

Instead of providing both a column family and a column qualifier, items in the columns argument may also be just
a column family, which means that all columns from that column family will be retrieved. For example, to get all
columns and values in the column family cf1, use this:

row = table.row('row-key', columns=['cf1'])

In HBase, each cell has a timestamp attached to it. In case you don’t want to work with the latest version of data stored
in HBase, the methods that retrieve data from the database, e.g. Table.row(), all accept a timestamp argument that
specifies that the results should be restricted to values with a timestamp up to the specified timestamp:

row = table.row('row-key', timestamp=123456789)

By default, HappyBase does not include timestamps in the results it returns. In your application needs access to the
timestamps, simply set the include_timestamp argument to True. Now, each cell in the result will be returned as a
(value, timestamp) tuple instead of just a value:

row = table.row('row-key', columns=['cf1:col1'], include_timestamp=True)
value, timestamp = row['cf1:col1']

HBase supports storing multiple versions of the same cell. This can be configured for each column family. To retrieve
all versions of a column for a given row, Table.cells() can be used. This method returns an ordered list of cells,
with the most recent version coming first. The versions argument specifies the maximum number of versions to return.
Just like the methods that retrieve rows, the include_timestamp argument determines whether timestamps are included
in the result. Example:

values = table.cells('row-key', 'cf1:col1', versions=2)
for value in values:

print "Cell data: %s" % value

cells = table.cells('row-key', 'cf1:col1', versions=3, include_timestamp=True)
for value, timestamp in cells:

print "Cell data at %d: %s" % (timestamp, value)

Note that the result may contain fewer cells than requested. The cell may just have fewer versions, or you may have
requested more versions than HBase keeps for the column family.

Scanning over rows in a table

In addition to retrieving data for known row keys, rows in HBase can be efficiently iterated over using a table scanner,
created using Table.scan(). A basic scanner that iterates over all rows in the table looks like this:

2.2. User guide 9

HappyBase, Release 0.9

for key, data in table.scan():
print key, data

Doing full table scans like in the example above is prohibitively expensive in practice. Scans can be restricted in
several ways to make more selective range queries. One way is to specify start or stop keys, or both. To iterate over
all rows from row aaa to the end of the table:

for key, data in table.scan(row_start='aaa'):
print key, data

To iterate over all rows from the start of the table up to row xyz, use this:

for key, data in table.scan(row_stop='xyz'):
print key, data

To iterate over all rows between row aaa (included) and xyz (not included), supply both:

for key, data in table.scan(row_start='aaa', row_stop='xyz'):
print key, data

An alternative is to use a key prefix. For example, to iterate over all rows starting with abc:

for key, data in table.scan(row_prefix='abc'):
print key, data

The scanner examples above only limit the results by row key using the row_start, row_stop, and row_prefix arguments,
but scanners can also limit results to certain columns, column families, and timestamps, just like Table.row()
and Table.rows(). For advanced users, a filter string can be passed as the filter argument. Additionally, the
optional limit argument defines how much data is at most retrieved, and the batch_size argument specifies how big the
transferred chunks should be. The Table.scan() API documentation provides more information on the supported
scanner options.

2.2.4 Manipulating data

HBase does not have any notion of data types; all row keys, column names and column values are simply treated as
raw byte strings. By design, HappyBase does not do any automatic string conversion. This means that data must be
converted to byte strings in your application before you pass it to HappyBase, for instance by calling str() or by
employing more advanced string serialisation techniques like struct.pack().

In HBase, all mutations either store data or mark data for deletion; there is no such thing as an in-place update or
delete. HappyBase provides methods to do single inserts or deletes, and a batch API to perform multiple mutations in
one go.

Storing data

To store a single cell of data in our table, we can use Table.put(), which takes the row key, and the data to store.
The data should be a dictionary mapping the column name to a value:

table.put('row-key', {'cf:col1': 'value1',
'cf:col2': 'value2'})

Use the timestamp argument if you want to provide timestamps explicitly:

table.put('row-key', {'cf:col1': 'value1'}, timestamp=123456789)

If omitted, HBase defaults to the current system time.

10 Chapter 2. Core documentation

HappyBase, Release 0.9

Deleting data

The Table.delete() method deletes data from a table. To delete a complete row, just specify the row key:

table.delete('row-key')

To delete one or more columns instead of a complete row, also specify the columns argument:

table.delete('row-key', columns=['cf1:col1', 'cf1:col2'])

The optional timestamp argument restricts the delete operation to data up to the specified timestamp.

Performing batch mutations

The Table.put() and Table.delete()methods both issue a command to the HBase Thrift server immediately.
This means that using these methods is not very efficient when storing or deleting multiple values. It is much more
efficient to aggregate a bunch of commands and send them to the server in one go. This is exactly what the Batch
class, created using Table.batch(), does. A Batch instance has put and delete methods, just like the Table
class, but the changes are sent to the server in a single round-trip using Batch.send():

b = table.batch()
b.put('row-key-1', {'cf:col1': 'value1', 'cf:col2': 'value2'})
b.put('row-key-2', {'cf:col2': 'value2', 'cf:col3': 'value3'})
b.put('row-key-3', {'cf:col3': 'value3', 'cf:col4': 'value4'})
b.delete('row-key-4')
b.send()

Note: Storing and deleting data for the same row key in a single batch leads to unpredictable results, so don’t do that.

While the methods on the Batch instance resemble the put() and delete()methods, they do not take a timestamp
argument for each mutation. Instead, you can specify a single timestamp argument for the complete batch:

b = table.batch(timestamp=123456789)
b.put(...)
b.delete(...)
b.send()

Batch instances can be used as context managers, which are most useful in combination with Python’s with con-
struct. The example above can be simplified to read:

with table.batch() as b:
b.put('row-key-1', {'cf:col1': 'value1', 'cf:col2': 'value2'})
b.put('row-key-2', {'cf:col2': 'value2', 'cf:col3': 'value3'})
b.put('row-key-3', {'cf:col3': 'value3', 'cf:col4': 'value4'})
b.delete('row-key-4')

As you can see, there is no call to Batch.send() anymore. The batch is automatically applied when the with
code block terminates, even in case of errors somewhere in the with block, so it behaves basically the same as a
try/finally clause. However, some applications require transactional behaviour, sending the batch only if no
exception occurred. Without a context manager this would look something like this:

b = table.batch()
try:

b.put('row-key-1', {'cf:col1': 'value1', 'cf:col2': 'value2'})
b.put('row-key-2', {'cf:col2': 'value2', 'cf:col3': 'value3'})
b.put('row-key-3', {'cf:col3': 'value3', 'cf:col4': 'value4'})

2.2. User guide 11

HappyBase, Release 0.9

b.delete('row-key-4')
raise ValueError("Something went wrong!")

except ValueError as e:
error handling goes here; nothing is sent to HBase
pass

else:
no exceptions; send data
b.send()

Obtaining the same behaviour is easier using a with block. The transaction argument to Table.batch() is all
you need:

try:
with table.batch(transaction=True) as b:

b.put('row-key-1', {'cf:col1': 'value1', 'cf:col2': 'value2'})
b.put('row-key-2', {'cf:col2': 'value2', 'cf:col3': 'value3'})
b.put('row-key-3', {'cf:col3': 'value3', 'cf:col4': 'value4'})
b.delete('row-key-4')
raise ValueError("Something went wrong!")

except ValueError:
error handling goes here; nothing is sent to HBase
pass

when no error occurred, the transaction succeeded

As you may have imagined already, a Batch keeps all mutations in memory until the batch is sent, either by calling
Batch.send() explicitly, or when the with block ends. This doesn’t work for applications that need to store
huge amounts of data, since it may result in batches that are too big to send in one round-trip, or in batches that use
too much memory. For these cases, the batch_size argument can be specified. The batch_size acts as a threshold: a
Batch instance automatically sends all pending mutations when there are more than batch_size pending operations.
For example, this will result in three round-trips to the server (two batches with 1000 cells, and one with the remaining
400):

with table.batch(batch_size=1000) as b:
for i in range(1200):

this put() will result in two mutations (two cells)
b.put('row-%04d' % i, {'cf1:col1': 'v1',

'cf1:col2': 'v2',})

The appropriate batch_size is very application-specific since it depends on the data size, so just experiment to see how
different sizes work for your specific use case.

Using atomic counters

The Table.counter_inc() and Table.counter_dec() methods allow for atomic incrementing and decre-
menting of 8 byte wide values, which are interpreted as big-endian 64-bit signed integers by HBase. Counters are
automatically initialised to 0 upon first use. When incrementing or decrementing a counter, the value after modifica-
tion is returned. Example:

print table.counter_inc('row-key', 'cf1:counter') # prints 1
print table.counter_inc('row-key', 'cf1:counter') # prints 2
print table.counter_inc('row-key', 'cf1:counter') # prints 3

print table.counter_dec('row-key', 'cf1:counter') # prints 2

The optional value argument specifies how much to increment or decrement by:

12 Chapter 2. Core documentation

HappyBase, Release 0.9

print table.counter_inc('row-key', 'cf1:counter', value=3) # prints 5

While counters are typically used with the increment and decrement functions shown above, the
Table.counter_get() and Table.counter_set() methods can be used to retrieve or set a counter value
directly:

print table.counter_get('row-key', 'cf1:counter') # prints 5

table.counter_set('row-key', 'cf1:counter', 12)

Note: An application should never counter_get() the current value, modify it in code and then
counter_set() the modified value; use the atomic counter_inc() and counter_dec() instead!

2.2.5 Using the connection pool

HappyBase comes with a thread-safe connection pool that allows multiple threads to share and reuse open connections.
This is most useful in multi-threaded server applications such as web applications served using Apache’s mod_wsgi.
When a thread asks the pool for a connection (using ConnectionPool.connection()), it will be granted a
lease, during which the thread has exclusive access to the connection. After the thread is done using the connection, it
returns the connection to the pool so that it becomes available for other threads.

Instantiating the pool

The pool is provided by the ConnectionPool class. The size argument to the constructor specifies the number of
connections in the pool. Additional arguments are passed on to the Connection constructor:

pool = happybase.ConnectionPool(size=3, host='...', table_prefix='myproject')

Upon instantiation, the connection pool will establish a connection immediately, so that simple problems like wrong
host names are detected immediately. For the remaining connections, the pool acts lazy: new connections will be
opened only when needed.

Obtaining connections

Connections can only be obtained using Python’s context manager protocol, i.e. using a code block inside a with
statement. This ensures that connections are actually returned to the pool after use. Example:

pool = happybase.ConnectionPool(size=3, host='...')

with pool.connection() as connection:
print connection.tables()

Warning: Never use the connection instance after the with block has ended. Even though the variable is
still in scope, the connection may have been assigned to another thread in the mean time.

Connections should be returned to the pool as quickly as possible, so that other threads can use them. This means that
the amount of code included inside the with block should be kept to an absolute minimum. In practice, an application
should only load data inside the with block, and process the data outside the with block:

2.2. User guide 13

HappyBase, Release 0.9

with pool.connection() as connection:
table = connection.table('table-name')
row = table.row('row-key')

process_data(row)

An application thread can only hold one connection at a time. When a thread holds a connection and asks for a
connection for a second time (e.g. because a called function also requests a connection from the pool), the same
connection instance it already holds is returned, so this does not require any coordination from the application. This
means that in the following example, both connection requests to the pool will return the exact same connection:

pool = happybase.ConnectionPool(size=3, host='...')

def do_something_else():
with pool.connection() as connection:

pass # use the connection here

with pool.connection() as connection:
use the connection here, e.g.
print(connection.tables())

call another function that uses a connection
do_something_else()

Handling broken connections

The pool tries to detect broken connections and will replace those with fresh ones when the connection is returned
to the pool. However, the connection pool does not capture raised exceptions, nor does it automatically retry failed
operations. This means that the application still has to handle connection errors.

Next steps

The next step is to try it out for yourself! The API documentation can be used as a reference.

2.3 API reference

This chapter contains detailed API documentation for HappyBase. It is suggested to read the user guide first to get a
general idea about how HappyBase works.

The HappyBase API is organised as follows:

Connection: The Connection class is the main entry point for application developers. It connects to the HBase
Thrift server and provides methods for table management.

Table: The Table class is the main class for interacting with data in tables. This class offers methods for data
retrieval and data manipulation. Instances of this class can be obtained using the Connection.table()
method.

Batch: The Batch class implements the batch API for data manipulation, and is available through the
Table.batch() method.

ConnectionPool: The ConnectionPool class implements a thread-safe connection pool that allows an appli-
cation to (re)use multiple connections.

14 Chapter 2. Core documentation

HappyBase, Release 0.9

2.3.1 Connection

class happybase.Connection(host=’localhost’, port=9090, timeout=None, autoconnect=True, ta-
ble_prefix=None, table_prefix_separator=’_’, compat=‘0.96’, trans-
port=’buffered’, protocol=’binary’)

Connection to an HBase Thrift server.

The host and port arguments specify the host name and TCP port of the HBase Thrift server to connect to. If
omitted or None, a connection to the default port on localhost is made. If specifed, the timeout argument
specifies the socket timeout in milliseconds.

If autoconnect is True (the default) the connection is made directly, otherwise Connection.open() must
be called explicitly before first use.

The optional table_prefix and table_prefix_separator arguments specify a prefix and a separator string to be
prepended to all table names, e.g. when Connection.table() is invoked. For example, if table_prefix is
myproject, all tables tables will have names like myproject_XYZ.

The optional compat argument sets the compatibility level for this connection. Older HBase versions have
slightly different Thrift interfaces, and using the wrong protocol can lead to crashes caused by communication
errors, so make sure to use the correct one. This value can be either the string 0.90, 0.92, 0.94, or 0.96
(the default).

The optional transport argument specifies the Thrift transport mode to use. Supported values for this argument
are buffered (the default) and framed. Make sure to choose the right one, since otherwise you might
see non-obvious connection errors or program hangs when making a connection. HBase versions before 0.94
always use the buffered transport. Starting with HBase 0.94, the Thrift server optionally uses a framed transport,
depending on the argument passed to the hbase-daemon.sh start thrift command. The default
-threadpoolmode uses the buffered transport; the -hsha, -nonblocking, and -threadedselector
modes use the framed transport.

The optional protocol argument specifies the Thrift transport protocol to use. Supported values for this argument
are binary (the default) and compact. Make sure to choose the right one, since otherwise you might see
non-obvious connection errors or program hangs when making a connection. TCompactProtocol is a more
compact binary format that is typically more efficient to process as well. TBinaryAccelerated is the
default protocol that happybase uses.

New in version 0.9: protocol argument

New in version 0.5: timeout argument

New in version 0.4: table_prefix_separator argument

New in version 0.4: support for framed Thrift transports

Parameters

• host (str) – The host to connect to

• port (int) – The port to connect to

• timeout (int) – The socket timeout in milliseconds (optional)

• autoconnect (bool) – Whether the connection should be opened directly

• table_prefix (str) – Prefix used to construct table names (optional)

• table_prefix_separator (str) – Separator used for table_prefix

• compat (str) – Compatibility mode (optional)

• transport (str) – Thrift transport mode (optional)

2.3. API reference 15

HappyBase, Release 0.9

close()
Close the underyling transport to the HBase instance.

This method closes the underlying Thrift transport (TCP connection).

compact_table(name, major=False)
Compact the specified table.

Parameters

• name (str) – The table name

• major (bool) – Whether to perform a major compaction.

create_table(name, families)
Create a table.

Parameters

• name (str) – The table name

• families (dict) – The name and options for each column family

The families argument is a dictionary mapping column family names to a dictionary containing the options
for this column family, e.g.

families = {
'cf1': dict(max_versions=10),
'cf2': dict(max_versions=1, block_cache_enabled=False),
'cf3': dict(), # use defaults

}
connection.create_table('mytable', families)

These options correspond to the ColumnDescriptor structure in the Thrift API, but note that the names
should be provided in Python style, not in camel case notation, e.g. time_to_live, not timeToLive. The
following options are supported:

•max_versions (int)

•compression (str)

•in_memory (bool)

•bloom_filter_type (str)

•bloom_filter_vector_size (int)

•bloom_filter_nb_hashes (int)

•block_cache_enabled (bool)

•time_to_live (int)

delete_table(name, disable=False)
Delete the specified table.

New in version 0.5: disable argument

In HBase, a table always needs to be disabled before it can be deleted. If the disable argument is True, this
method first disables the table if it wasn’t already and then deletes it.

Parameters

• name (str) – The table name

• disable (bool) – Whether to first disable the table if needed

16 Chapter 2. Core documentation

HappyBase, Release 0.9

disable_table(name)
Disable the specified table.

Parameters name (str) – The table name

enable_table(name)
Enable the specified table.

Parameters name (str) – The table name

is_table_enabled(name)
Return whether the specified table is enabled.

Parameters name (str) – The table name

Returns whether the table is enabled

Return type bool

open()
Open the underlying transport to the HBase instance.

This method opens the underlying Thrift transport (TCP connection).

table(name, use_prefix=True)
Return a table object.

Returns a happybase.Table instance for the table named name. This does not result in a round-trip to
the server, and the table is not checked for existence.

The optional use_prefix argument specifies whether the table prefix (if any) is prepended to the specified
name. Set this to False if you want to use a table that resides in another ‘prefix namespace’, e.g. a table
from a ‘friendly’ application co-hosted on the same HBase instance. See the table_prefix argument to the
Connection constructor for more information.

Parameters

• name (str) – the name of the table

• use_prefix (bool) – whether to use the table prefix (if any)

Returns Table instance

Return type Table

tables()
Return a list of table names available in this HBase instance.

If a table_prefix was set for this Connection, only tables that have the specified prefix will be listed.

Returns The table names

Return type List of strings

2.3.2 Table

class happybase.Table(name, connection)
HBase table abstraction class.

This class cannot be instantiated directly; use Connection.table() instead.

batch(timestamp=None, batch_size=None, transaction=False, wal=True)
Create a new batch operation for this table.

2.3. API reference 17

HappyBase, Release 0.9

This method returns a new Batch instance that can be used for mass data manipulation. The timestamp
argument applies to all puts and deletes on the batch.

If given, the batch_size argument specifies the maximum batch size after which the batch should send the
mutations to the server. By default this is unbounded.

The transaction argument specifies whether the returned Batch instance should act in a transaction-like
manner when used as context manager in a with block of code. The transaction flag cannot be used in
combination with batch_size.

The wal argument determines whether mutations should be written to the HBase Write Ahead Log (WAL).
This flag can only be used with recent HBase versions. If specified, it provides a default for all the put and
delete operations on this batch. This default value can be overridden for individual operations using the
wal argument to Batch.put() and Batch.delete().

New in version 0.7: wal argument

Parameters

• transaction (bool) – whether this batch should behave like a transaction (only useful
when used as a context manager)

• batch_size (int) – batch size (optional)

• timestamp (int) – timestamp (optional)

• bool (wal) – whether to write to the WAL (optional)

Returns Batch instance

Return type Batch

cells(row, column, versions=None, timestamp=None, include_timestamp=False)
Retrieve multiple versions of a single cell from the table.

This method retrieves multiple versions of a cell (if any).

The versions argument defines how many cell versions to retrieve at most.

The timestamp and include_timestamp arguments behave exactly the same as for row().

Parameters

• row (str) – the row key

• column (str) – the column name

• versions (int) – the maximum number of versions to retrieve

• timestamp (int) – timestamp (optional)

• include_timestamp (bool) – whether timestamps are returned

Returns cell values

Return type list of values

counter_dec(row, column, value=1)
Atomically decrement (or increments) a counter column.

This method is a shortcut for calling Table.counter_inc() with the value negated.

Returns counter value after decrementing

Return type int

18 Chapter 2. Core documentation

HappyBase, Release 0.9

counter_get(row, column)
Retrieve the current value of a counter column.

This method retrieves the current value of a counter column. If the counter column does not exist, this
function initialises it to 0.

Note that application code should never store a incremented or decremented counter value directly; use
the atomic Table.counter_inc() and Table.counter_dec() methods for that.

Parameters

• row (str) – the row key

• column (str) – the column name

Returns counter value

Return type int

counter_inc(row, column, value=1)
Atomically increment (or decrements) a counter column.

This method atomically increments or decrements a counter column in the row specified by row. The value
argument specifies how much the counter should be incremented (for positive values) or decremented (for
negative values). If the counter column did not exist, it is automatically initialised to 0 before incrementing
it.

Parameters

• row (str) – the row key

• column (str) – the column name

• value (int) – the amount to increment or decrement by (optional)

Returns counter value after incrementing

Return type int

counter_set(row, column, value=0)
Set a counter column to a specific value.

This method stores a 64-bit signed integer value in the specified column.

Note that application code should never store a incremented or decremented counter value directly; use
the atomic Table.counter_inc() and Table.counter_dec() methods for that.

Parameters

• row (str) – the row key

• column (str) – the column name

• value (int) – the counter value to set

delete(row, columns=None, timestamp=None, wal=True)
Delete data from the table.

This method deletes all columns for the row specified by row, or only some columns if the columns
argument is specified.

Note that, in many situations, batch() is a more appropriate method to manipulate data.

New in version 0.7: wal argument

Parameters

• row (str) – the row key

2.3. API reference 19

HappyBase, Release 0.9

• columns (list_or_tuple) – list of columns (optional)

• timestamp (int) – timestamp (optional)

• bool (wal) – whether to write to the WAL (optional)

families()
Retrieve the column families for this table.

Returns Mapping from column family name to settings dict

Return type dict

put(row, data, timestamp=None, wal=True)
Store data in the table.

This method stores the data in the data argument for the row specified by row. The data argument is
dictionary that maps columns to values. Column names must include a family and qualifier part, e.g.
cf:col, though the qualifier part may be the empty string, e.g. cf:.

Note that, in many situations, batch() is a more appropriate method to manipulate data.

New in version 0.7: wal argument

Parameters

• row (str) – the row key

• data (dict) – the data to store

• timestamp (int) – timestamp (optional)

• bool (wal) – whether to write to the WAL (optional)

regions()
Retrieve the regions for this table.

Returns regions for this table

Return type list of dicts

row(row, columns=None, timestamp=None, include_timestamp=False)
Retrieve a single row of data.

This method retrieves the row with the row key specified in the row argument and returns the columns and
values for this row as a dictionary.

The row argument is the row key of the row. If the columns argument is specified, only the values for
these columns will be returned instead of all available columns. The columns argument should be a list or
tuple containing strings. Each name can be a column family, such as cf1 or cf1: (the trailing colon is not
required), or a column family with a qualifier, such as cf1:col1.

If specified, the timestamp argument specifies the maximum version that results may have. The in-
clude_timestamp argument specifies whether cells are returned as single values or as (value, timestamp)
tuples.

Parameters

• row (str) – the row key

• columns (list_or_tuple) – list of columns (optional)

• timestamp (int) – timestamp (optional)

• include_timestamp (bool) – whether timestamps are returned

Returns Mapping of columns (both qualifier and family) to values

20 Chapter 2. Core documentation

HappyBase, Release 0.9

Return type dict

rows(rows, columns=None, timestamp=None, include_timestamp=False)
Retrieve multiple rows of data.

This method retrieves the rows with the row keys specified in the rows argument, which should be should
be a list (or tuple) of row keys. The return value is a list of (row_key, row_dict) tuples.

The columns, timestamp and include_timestamp arguments behave exactly the same as for row().

Parameters

• rows (list) – list of row keys

• columns (list_or_tuple) – list of columns (optional)

• timestamp (int) – timestamp (optional)

• include_timestamp (bool) – whether timestamps are returned

Returns List of mappings (columns to values)

Return type list of dicts

scan(row_start=None, row_stop=None, row_prefix=None, columns=None, filter=None, times-
tamp=None, include_timestamp=False, batch_size=1000, scan_batching=None, limit=None,
sorted_columns=False)

Create a scanner for data in the table.

This method returns an iterable that can be used for looping over the matching rows. Scanners can be
created in two ways:

•The row_start and row_stop arguments specify the row keys where the scanner should start and stop.
It does not matter whether the table contains any rows with the specified keys: the first row after
row_start will be the first result, and the last row before row_stop will be the last result. Note that the
start of the range is inclusive, while the end is exclusive.

Both row_start and row_stop can be None to specify the start and the end of the table respectively.
If both are omitted, a full table scan is done. Note that this usually results in severe performance
problems.

•Alternatively, if row_prefix is specified, only rows with row keys matching the prefix will be returned.
If given, row_start and row_stop cannot be used.

The columns, timestamp and include_timestamp arguments behave exactly the same as for row().

The filter argument may be a filter string that will be applied at the server by the region servers.

If limit is given, at most limit results will be returned.

The batch_size argument specifies how many results should be retrieved per batch when retrieving results
from the scanner. Only set this to a low value (or even 1) if your data is large, since a low batch size results
in added round-trips to the server.

The optional scan_batching is for advanced usage only; it translates to Scan.setBatching() at the Java side
(inside the Thrift server). By setting this value rows may be split into partial rows, so result rows may be
incomplete, and the number of results returned by te scanner may no longer correspond to the number of
rows matched by the scan.

If sorted_columns is True, the columns in the rows returned by this scanner will be retrieved in sorted
order, and the data will be stored in OrderedDict instances.

Compatibility notes:

•The filter argument is only available when using HBase 0.92 (or up). In HBase 0.90 compatibility
mode, specifying a filter raises an exception.

2.3. API reference 21

HappyBase, Release 0.9

•The sorted_columns argument is only available when using HBase 0.96 (or up).

New in version 0.8: sorted_columns argument

New in version 0.8: scan_batching argument

Parameters

• row_start (str) – the row key to start at (inclusive)

• row_stop (str) – the row key to stop at (exclusive)

• row_prefix (str) – a prefix of the row key that must match

• columns (list_or_tuple) – list of columns (optional)

• filter (str) – a filter string (optional)

• timestamp (int) – timestamp (optional)

• include_timestamp (bool) – whether timestamps are returned

• batch_size (int) – batch size for retrieving resuls

• scan_batching (bool) – server-side scan batching (optional)

• limit (int) – max number of rows to return

• sorted_columns (bool) – whether to return sorted columns

Returns generator yielding the rows matching the scan

Return type iterable of (row_key, row_data) tuples

2.3.3 Batch

class happybase.Batch(table, timestamp=None, batch_size=None, transaction=False, wal=True)
Batch mutation class.

This class cannot be instantiated directly; use Table.batch() instead.

delete(row, columns=None, wal=None)
Delete data from the table.

See Table.put() for a description of the row, data, and wal arguments. The wal argument should
normally not be used; its only use is to override the batch-wide value passed to Table.batch().

put(row, data, wal=None)
Store data in the table.

See Table.put() for a description of the row, data, and wal arguments. The wal argument should
normally not be used; its only use is to override the batch-wide value passed to Table.batch().

send()
Send the batch to the server.

2.3.4 Connection pool

class happybase.ConnectionPool(size, **kwargs)
Thread-safe connection pool.

New in version 0.5.

22 Chapter 2. Core documentation

HappyBase, Release 0.9

The size argument specifies how many connections this pool manages. Additional keyword arguments are passed
unmodified to the happybase.Connection constructor, with the exception of the autoconnect argument,
since maintaining connections is the task of the pool.

Parameters

• size (int) – the maximum number of concurrently open connections

• kwargs – keyword arguments passed to happybase.Connection

connection(*args, **kwds)
Obtain a connection from the pool.

This method must be used as a context manager, i.e. with Python’s with block. Example:

with pool.connection() as connection:
pass # do something with the connection

If timeout is specified, this is the number of seconds to wait for a connection to become available be-
fore NoConnectionsAvailable is raised. If omitted, this method waits forever for a connection to
become available.

Parameters timeout (int) – number of seconds to wait (optional)

Returns active connection from the pool

Return type happybase.Connection

class happybase.NoConnectionsAvailable
Exception raised when no connections are available.

This happens if a timeout was specified when obtaining a connection, and no connection became available within
the specified timeout.

New in version 0.5.

2.3. API reference 23

HappyBase, Release 0.9

24 Chapter 2. Core documentation

CHAPTER 3

Additional documentation

3.1 Version history

3.1.1 HappyBase 0.9

Release date: 2014-11-24

• Fix an issue where scanners would return fewer results than expected due to HBase not always behaving as its
documentation suggests (issue #72).

• Add support for the Thrift compact protocol (TCompactProtocol) in Connection (issue #70).

3.1.2 HappyBase 0.8

Release date: 2014-02-25

• Add (and default to) ‘0.96’ compatibility mode in Connection.

• Add support for retrieving sorted columns, which is possible with the HBase 0.96 Thrift API. This feature
uses a new sorted_columns argument to Table.scan(). An ‘OrderedDict implementation is required
for this feature; with Python 2.7 this is available from the standard library, but for Python 2.6 a separate
‘ordereddict‘ pacakge has to be installed from PyPI. (issue #39)

• The batch_size argument to Table.scan() is no longer propagated to Scan.setBatching() at the Java side
(inside the Thrift server). To influence the Scan.setBatching() (which may split rows into partial rows) a new
scan_batching argument to Table.scan() has been added. See issue #54, issue #56, and the HBase docs for
Scan.setBatching() for more details.

3.1.3 HappyBase 0.7

Release date: 2013-11-06

• Added a wal argument to various data manipulation methods on the Table and Batch classes to determine
whether to write the mutation to the Write-Ahead Log (WAL). (issue #36)

• Pass batch_size to underlying Thrift Scan instance (issue #38).

• Expose server name and port in Table.regions() (recent HBase versions only) (issue #37).

• Regenerated bundled Thrift API modules using a recent upstream Thrift API definition. This is required to
expose newly added API.

25

https://github.com/wbolster/happybase/issues/72
https://github.com/wbolster/happybase/issues/70
https://github.com/wbolster/happybase/issues/39
https://github.com/wbolster/happybase/issues/54
https://github.com/wbolster/happybase/issues/56
https://github.com/wbolster/happybase/issues/36
https://github.com/wbolster/happybase/issues/38
https://github.com/wbolster/happybase/issues/37

HappyBase, Release 0.9

3.1.4 HappyBase 0.6

Release date: 2013-06-12

• Rewrote exception handling in connection pool. Exception handling is now a lot cleaner and does not introduce
cyclic references anymore. (issue #25).

• Regenerated bundled Thrift code using Thrift 0.9.0 with the new-style classes flag (issue #27).

3.1.5 HappyBase 0.5

Release date: 2013-05-24

• Added a thread-safe connection pool (ConnectionPool) to keep connections open and share them between
threads (issue #21).

• The Connection.delete_table() method now features an optional disable parameter to make deleting
enabled tables easier.

• The debug log message emitted by Table.scan() when closing a scanner now includes both the number of
rows returned to the calling code, and also the number of rows actually fetched from the server. If scanners are
not completely iterated over (e.g. because of a ‘break’ statement in the for loop for the scanner), these numbers
may differ. If this happens often, and the differences are big, this may be a hint that the batch_size parameter to
Table.scan() is not optimal for your application.

• Increased Thrift dependency to at least 0.8. Older versions are no longer available from PyPI. HappyBase should
not be used with obsoleted Thrift versions.

• The Connection constructor now features an optional timeout parameter to to specify the timeout to use for
the Thrift socket (issue #15)

• The timestamp argument to various methods now also accepts long values in addition to int values. This fixes
problems with large timestamp values on 32-bit systems. (issue #23).

• In some corner cases exceptions were raised during interpreter shutdown while closing any remaining open
connections. (issue #18)

3.1.6 HappyBase 0.4

Release date: 2012-07-11

• Add an optional table_prefix_separator argument to the Connection constructor, to specify the prefix used
for the table_prefix argument (issue #3)

• Add support for framed Thrift transports using a new optional transport argument to Connection (issue #6)

• Add the Apache license conditions in the license statement (for the included HBase parts)

• Documentation improvements

3.1.7 HappyBase 0.3

Release date: 2012-05-25

New features:

• Improved compatibility with HBase 0.90.x

26 Chapter 3. Additional documentation

https://github.com/wbolster/happybase/issues/25
https://github.com/wbolster/happybase/issues/27
https://github.com/wbolster/happybase/issues/21
https://github.com/wbolster/happybase/issues/15
https://github.com/wbolster/happybase/issues/23
https://github.com/wbolster/happybase/issues/18
https://github.com/wbolster/happybase/issues/3
https://github.com/wbolster/happybase/issues/6

HappyBase, Release 0.9

– In earlier versions, using Table.scan() in combination with HBase 0.90.x often resulted in crashes,
caused by incompatibilities in the underlying Thrift protocol.

– A new compat flag to the Connection constructor has been added to enable compatibility with HBase
0.90.x.

– Note that the Table.scan() API has a few limitations when used with HBase 0.90.x.

• The row_prefix argument to Table.scan() can now be used together with filter and timestamp arguments.

Other changes:

• Lower Thrift dependency to 0.6

• The setup.py script no longer installs the tests

• Documentation improvements

3.1.8 HappyBase 0.2

Release date: 2012-05-22

• Fix package installation, so that pip install happybase works as expected (issue #1)

• Various small documentation improvements

3.1.9 HappyBase 0.1

Release date: 2012-05-20

• Initial release

3.2 Development

3.2.1 Getting the source

The HappyBase source code repository is hosted on GitHub:

https://github.com/wbolster/happybase

To grab a copy, use this:

$ git clone https://github.com/wbolster/happybase.git

3.2.2 Setting up a development environment

Setting up a development environment from a Git branch is easy:

$ cd /path/to/happybase/
$ mkvirtualenv happybase
(happybase)$ pip install -r test-requirements.txt
(happybase)$ pip install -e .

3.2. Development 27

https://github.com/wbolster/happybase/issues/1
https://github.com/wbolster/happybase

HappyBase, Release 0.9

3.2.3 Running the tests

The tests use the nose test suite. To execute the tests, run:

(happybase)$ make test

Test outputs are shown on the console. A test code coverage report is saved in coverage/index.html.

If the Thrift server is not running on localhost, you can specify these environment variables (both are optional) before
running the tests:

(happybase)$ export HAPPYBASE_HOST=host.example.org
(happybase)$ export HAPPYBASE_PORT=9091

To test the HBase 0.90 compatibility mode, use this:

(happybase)$ export HAPPYBASE_COMPAT=0.90

To test the framed Thrift transport mode, use this:

(happybase)$ export HAPPYBASE_TRANSPORT=framed

3.2.4 Contributing

Feel free to report any issues on GitHub. Patches and merge requests are also most welcome.

3.3 To-do list and possible future work

This document lists some ideas that the developers thought of, but have not yet implemented. The topics described
below may be implemented (or not) in the future, depending on time, demand, and technical possibilities.

• Improved error handling instead of just propagating the errors from the Thrift layer. Maybe wrap the errors in a
HappyBase.Error?

• Automatic retries for failed operations (but only those that can be retried)

• Port HappyBase over to the (still experimental) HBase Thrift2 API when it becomes mainstream, and expose
more of the underlying features nicely in the HappyBase API.

• Python 3 support. This would be trivial for HappyBase, but the underlying Thrift library needs to be Python 3
compatible first.

3.4 Frequently asked questions

3.4.1 I love HappyBase! Can I donate?

Thanks, I’m glad to hear that you appreciate my work! If you feel like, please make a small donation to sponsor my
(spare time!) work on HappyBase. Small gestures are really motivating for me and help me keep this project going!

28 Chapter 3. Additional documentation

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=ZJ9U8DNN6KZ9Q

HappyBase, Release 0.9

3.4.2 Why not use the Thrift API directly?

While the HBase Thrift API can be used directly from Python using (automatically generated) HBase Thrift service
classes, application code doing so is very verbose, cumbersome to write, and hence error-prone. The reason for this
is that the HBase Thrift API is a flat, language-agnostic interface API closely tied to the RPC going over the wire-
level protocol. In practice, this means that applications using Thrift directly need to deal with many imports, sockets,
transports, protocols, clients, Thrift types and mutation objects. For instance, look at the code required to connect to
HBase and store two values:

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol

from hbase import ttypes
from hbase.Hbase import Client, Mutation

sock = TSocket.TSocket('hostname', 9090)
transport = TTransport.TBufferedTransport(sock)
protocol = TBinaryProtocol.TBinaryProtocol(transport)
client = Client(protocol)
transport.open()

mutations = [Mutation(column='family:qual1', value='value1'),
Mutation(column='family:qual2', value='value2')]

client.mutateRow('table-name', 'row-key', mutations)

PEP 20 taught us that simple is better than complex, and as you can see, Thrift is certainly complex. HappyBase hides
all the Thrift cruft below a friendly API. The resulting application code will be cleaner, more productive to write, and
more maintainable. With HappyBase, the example above can be simplified to this:

import happybase

connection = happybase.Connection('hostname')
table = connection.table('table-name')
table.put('row-key', {'family:qual1': 'value1',

'family:qual2': 'value2'})

If you’re not convinced and still think the Thrift API is not that bad, please try to accomplish some other common
tasks, e.g. retrieving rows and scanning over a part of a table, and compare that to the HappyBase equivalents. If
you’re still not convinced by then, we’re sorry to inform you that HappyBase is not the project for you, and we wish
you all of luck maintaining your code or is it just Thrift boilerplate?

3.5 License

HappyBase itself is licensed under a MIT License. HappyBase contains code originating from HBase sources, licensed
under the Apache License (version 2.0). Both license texts are included below.

3.5.1 HappyBase License

(This is the MIT License.)

Copyright © 2012 Wouter Bolsterlee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,

3.5. License 29

https://www.python.org/dev/peps/pep-0020
http://www.opensource.org/licenses/MIT
http://www.apache.org/licenses/
http://www.opensource.org/licenses/MIT

HappyBase, Release 0.9

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.5.2 HBase License

(This is the Apache License, version 2.0, January 2004.)

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1
through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the
License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or
are under common control with that entity. For the purposes of this definition, “control” means (i) the power,
direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications, including but not limited to software
source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form,
including but not limited to compiled object code, generated documentation, and conversions to other media
types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License,
as indicated by a copyright notice that is included in or attached to the work (an example is provided in the
Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from)
the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as
a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include
works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative
Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and any modi-
fications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for
inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or
written communication sent to the Licensor or its representatives, including but not limited to communication
on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on
behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that
is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

30 Chapter 3. Additional documentation

http://www.apache.org/licenses/

HappyBase, Release 0.9

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has
been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to
reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as
of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any
medium, with or without modifications, and in Source or Object form, provided that You meet the following
conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent,
trademark, and attribution notices from the Source form of the Work, excluding those notices that do not
pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You
distribute must include a readable copy of the attribution notices contained within such NOTICE file,
excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source
form or documentation, if provided along with the Derivative Works; or, within a display generated by the
Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different
license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Deriva-
tive Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without
any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the
terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or
product names of the Licensor, except as required for reasonable and customary use in describing the origin of
the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work
(and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CON-
DITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.

3.5. License 31

HappyBase, Release 0.9

You are solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract,
or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in
writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or out of the use or inability to
use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of
the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You
may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obliga-
tions and/or rights consistent with this License. However, in accepting such obligations, You may act only on
Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against,
such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

32 Chapter 3. Additional documentation

CHAPTER 4

External links

• Online documentation (Read the Docs)

• Downloads (PyPI)

• Source code (Github)

33

http://happybase.readthedocs.org/
http://pypi.python.org/pypi/happybase/
https://github.com/wbolster/happybase

HappyBase, Release 0.9

34 Chapter 4. External links

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

35

HappyBase, Release 0.9

36 Chapter 5. Indices and tables

Index

B
Batch (class in happybase), 22
batch() (happybase.Table method), 17

C
cells() (happybase.Table method), 18
close() (happybase.Connection method), 15
compact_table() (happybase.Connection method), 16
Connection (class in happybase), 15
connection() (happybase.ConnectionPool method), 23
ConnectionPool (class in happybase), 22
counter_dec() (happybase.Table method), 18
counter_get() (happybase.Table method), 18
counter_inc() (happybase.Table method), 19
counter_set() (happybase.Table method), 19
create_table() (happybase.Connection method), 16

D
delete() (happybase.Batch method), 22
delete() (happybase.Table method), 19
delete_table() (happybase.Connection method), 16
disable_table() (happybase.Connection method), 16

E
enable_table() (happybase.Connection method), 17

F
families() (happybase.Table method), 20

I
is_table_enabled() (happybase.Connection method), 17

N
NoConnectionsAvailable (class in happybase), 23

O
open() (happybase.Connection method), 17

P
put() (happybase.Batch method), 22

put() (happybase.Table method), 20
Python Enhancement Proposals

PEP 20, 29

R
regions() (happybase.Table method), 20
row() (happybase.Table method), 20
rows() (happybase.Table method), 21

S
scan() (happybase.Table method), 21
send() (happybase.Batch method), 22

T
Table (class in happybase), 17
table() (happybase.Connection method), 17
tables() (happybase.Connection method), 17

37

	Example
	Core documentation
	Installation guide
	User guide
	API reference

	Additional documentation
	Version history
	Development
	To-do list and possible future work
	Frequently asked questions
	License

	External links
	Indices and tables

